

Work and energy

ThinkAbout:

- 1. A moving object has movement energy, also called energy.
- 2. When an object is lifted to a higher place, it is given potential
- Energy can be from one form to
 A falling object is energy from
- potential energy to energy.

work done = energy transferred

(joules, J)

(joules, J)

5. A stretched catapult has potential

	Work	and	energy	
--	------	-----	--------	--

When a force moves an object, energy is transferred and work is done. In fact:

To calculate the work done (energy transferred):

work done=force applied×distance moved in the direction of the force(joules, J)(newtons, N)(metres, m)										
Gravitational When an object is l against the force of	potential energy ifted up, work is done gravity, its weight,	е		Exe Ho of 2 wo	amp w n 2 N rk d	ole 1 nuch en moves lone = = =	nergy is tr through force > 2 N × 20 joul	ansferred a distand distand 10 m es (20	l if a for ce of 10 ce move J)	c n
It follows (from the gravitational potential energy	equations above) that = weight ×	at: change in vertical height		(ener	rgy trar	nsferred =	work de	one = 2	0
(joules, J) (newtons, N) (metre, m) Example 2 A man lifts up a brick of mass 5 kg fr to a shelf 2 metres high. What is the change in gravitational p Step 1 : Find the weight first (see Top weight = mass × gravitati = 5 kg × 10 N/kg Step 2 : change in gravitational potential energy = 50			om t oten ic 1(onal ight N	he f tial 0). l fiel × ×	floor energy d stren = <u>50 N</u> chang vertica 2 m	of the bri gth e in al height = 100	ck? joules	2.n		

Answers:	5. elastic, energy	gravitational, kinetic	, transferring,
med/changed, another	3. transferred/transfo	2. gravitational, energy	kinetic

Potential energy

Gravitational potential energy is the energy *stored* in an object because of the height it has been lifted to, against the force of gravity.

Elastic potential energy is the energy stored in an elastic object, when work has been done on the object to change its shape (eg. a catapult).

Kinetic energy (movement energy) Kinetic energy can be transformed into other forms o energy, as shown in the table:

An object has more kinetic energy,

- the greater its mass, and
- the greater its speed.

Example 4

For the car in Example 3 above,

- a) How much work must be done to stop it?
- b) When the brakes are applied, it comes to rest in 8 m. What is the average force exerted by the brakes?

```
a) To stop the car,
```

```
work done = energy transferred = 40\ 000\ \text{joules}
This energy will be transferred to heat in the brakes/tyres.
```

```
b) From the opposite page:
```

```
work done = force × distance moved

40\ 000\ J = force × 8 m

\therefore force = 5000 newtons
```

More details in Physics for You, pages 97–99, 11, 109.

of	Example:	Kinetic energy is transformed to:			
	a car braking	heat in brakes + tyres			
	a wind turbine	electricity, heat, sound			
	roller-coaster car, going up a ramp	gravitational potential energy, heat			
	bullet fired into wood	heat			
	space-shuttle, re-entering atmosphere	heat			
		┛			
n logr	nass × speed² ram, kg) (m/s)²				
s 800 kg is travelling at 10 m/s. inetic energy has it got?					
y :	= $\frac{1}{2} \times \text{mass} \times \text{speed}^2$				
:	$= \frac{1}{2} \times 800 \text{ kg} \times (10)$	m/s) ²			
:	$= \frac{1}{2} \times 800 \text{ kg} \times 100$	m^{2}/s^{2}			

= 40 000 joules (40 kJ)